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Abstract 
 
Sample matching is a fundamental capability that can have high probative value in a 
forensic context if proper validation studies are performed.  In this report we discuss the 
potential utility of using the elemental composition of two bioagent samples to decide if 
they were produced in the same batch, or by the same process.  Using guidance from the 
recent NRC study of bullet lead analysis and other sources, we develop a basic likelihood 
ratio framework for evaluating the evidentiary weight of elemental analysis data for 
sample matching.  We define an objective metric for comparing two samples, and 
propose a method for constructing an unbiased population of test samples.  We illustrate 
the basic methodology with some existing data on dry Bacillus thuringiensis 
preparations, and outline a comprehensive plan for experimental validation of this 
approach.   
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1. Introduction 
 
Matching samples of materials found at a crime scene with those associated with a person 
accused of a crime is a well-established method in forensic science.  However, the 
probative power and admissibility of such evidence in the courtroom is receiving greater 
scrutiny in recent years due, in part, to the increasingly rigorous interpretation of the 
Federal Rules of Evidence as represented in the Daubert1 and Kumho2 decisions, and 
partly due to the great success of DNA evidence, which is often cited as an exemplar3-6.  
The importance of this trend is reflected in the recent NRC study of bullet lead analysis, 
and the subsequent withdrawal of this method by the FBI7-9.  The fundamental scientific 
basis for the validity of even long-accepted “classical” forensic practices such as 
fingerprint and hair analysis have been recently questioned10.   It is important to note that 
in most of these cases, the actual analytical method used to characterize the samples is 
not in question.  The object of criticism is more often the scientific basis for assigning 
statistically meaningful inferential power to such data.   
 
In microbial forensics investigations, it is often desirable to determine if an agent used in 
a crime or act of terrorism can be matched to the agent used in another, similar event, or 
to material recovered from a laboratory suspected too be the source of the agent11.  The 
potential probative value of sample matching in a microbial forensic context can be 
illustrated by two scenarios: 
 
(1) Envelopes containing B. anthracis powders are received at two or more separate 
locations, on significantly different dates, and the envelopes themselves do not look 
similar.   A finding that the agent came from a common source greatly increases the odds 
that the same person or group is responsible for both events.   
 
(2) Material from an envelope is compared with material from a stock found in a suspect 
source laboratory.  A match between the characteristics of the materials clearly increases 
the probable association between the two anthrax samples.   
 
Genetic sequence information can be used to relate the organism in an agent to organisms 
found at suspected sources12.  However, as was evident in the investigation of the 
Anthrax letters incident of 2001, several laboratories may possess isolates of genetically 
identical organisms13.  In some cases the pathogen may be present in common in 
environmental settings and thus available to many, in principle.  If the agent is a toxin 
such as ricin there may be insufficient residual genetic material to analyze.  Thus, there 
are many reasons why additional means for relating bioagent samples are needed.  It is 
natural to turn to chemical or physical analysis for a solution to this problem.  While the 
courts have already considered pathogen DNA sequence evidence in a microbial 
forensics context14, it has not yet deliberated on the use of chemical and physical 
evidence in a bioterror or biocriminal trial.  However, we can be certain that if such an 
occasion arises, the scientific support for this kind of evidence will receive rigorous 
scrutiny with regard to its admissibility and evidential weight.  Thus, it is important to 
build a strong scientific basis for drawing inferences about sample matching when using 
chemical or physical characteristics of agent materials.   
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In the realm of chemical and physical analysis, there are many possible analytical 
methods by which two samples could be compared.  Elemental composition, isotopic 
ratios, and microscopic morphology are methods that are used in many other forensic 
contexts, and have natural extensions to microbial forensics.  Experience has shown that 
superficial examination of physical features of samples made by different methods may 
not be very revealing.  For example, well-washed anthrax spore preparations tend to look 
similar, regardless of the growth medium and preparation method used.  On the other 
hand, when samples are not thoroughly washed, the bulk morphology of two samples 
drawn from the same batch of bioagent can be quite different15, presumably because of 
inhomogeneity introduced by the drying process.  Thus, simple visual or microscopic 
inspection is not necessarily a reliable way to relate two samples. 
 
Among the various methods that can be used to match bioagent samples, elemental 
analysis has several favorable features.  First, it uses well-understood techniques that are 
familiar in other forensic contexts.  For example, bulk elemental analyses by Inductively 
Coupled Plasma – Mass Spectrometry (ICP-MS) or Inductively Coupled Plasma – 
Optical Emission Spectroscopy (ICP-OES) have been used to characterize glass16, office 
document paper17, and foils18.  In addition, there are well-developed techniques for non-
destructive elemental analysis of bulk samples such as X-ray Fluorescence (XRF), or that 
are applicable to trace samples such as Particle Induced X-ray Emission (PIXE) and 
Secondary Ion Mass Spectrometry (SIMS).  Several agent sterilization procedures such as 
irradiation and dry heating do not affect the elemental composition of a sample, and 
hence ordinary multipurpose instruments can be used to do the analysis.  
 
The elemental composition of a bioagent is the end result of the entire process used to 
produce it.  For an agent like B. anthracis, growth in a culture medium may be followed 
by separation, washing, and drying steps.  Certain materials may also be added to the 
finished agent as part of the “weaponization” process.  As illustrated in Figure 1, each of 
these steps has an influence on the overall elemental composition of the agent, either 
through addition or removal of certain elements.   
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Figure 1.  Schematic of steps in the growth and processing of a bioagent.  Each step may 
add or remove elements to some degree.  
 
Intuitively we expect that: 
 

• The variance among elemental concentrations among samples from a single batch 
will be smallest, since each agent particle has experienced identical, or nearly 
identical growth and processing conditions; 

 
• The variance among elemental concentrations from different batches made by the 

same process and the same materials may be somewhat larger due to uncontrolled 
random variations in how the process is carried out; 

 
• Variance among elemental concentrations from batches made by the same 

nominal process but with different sources of starting materials will be larger still, 
due to variation in the elemental composition of starting materials from different 
sources; and 

 
• The largest variance in elemental composition is expected among batches made 

by completely different processes utilizing different materials.   
 
However, experimental studies are required to determine quantitatively and statistically 
the extent to which these intuitive ideas are correct when one considers a representative 
variety of growth and production processes.  Ultimately, such studies should provide a 
sound statistical basis for deciding whether it is likely that two samples came from the 
same batch of material, or were made by different processes.   
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While it is clear that chemical or physical characteristics could provide information that 
pertains to agent preparation, we should be careful not to exaggerate current capabilities 
in this regard.  A recent paper has claimed: 
 

“… elemental signatures … are useful for separating B. subtilis spores 
based on culture media, and the method may thus be applied to microbial 
source attribution in the future.”19 

 
In fact, however, the reliability with which this or any other specific information about 
the growth and preparation procedure can be deduced from chemical and physical 
analysis remains to be demonstrated.  Similarly, the application of such information to 
“source attribution” will only be possible with considerably more extensive validation 
than was presented in the cited publication.  A careful evaluation of the use of elemental 
data for sample matching purposes is a critical first step in this direction.  
 
Recent events in a related arena – the NRC analysis of bullet lead examinations and the 
subsequent discontinuation of this method by the FBI laboratories – provide an example 
of how careful scientific validation is critical if sample matching evidence is to be 
admissible and have defensible probative value.  A new paradigm for conducting the 
evaluation and validation of forensic test methods is emerging, based on explicit 
likelihood analysis20. Under this paradigm, the key steps in evaluating and validating the 
application of elemental analysis to bioagent sample matching are: 
 
Defining the “population” – i.e. the complete set of growth and preparation methods that 
might be used to generate the bioagent, and all of the potential sources for starting 
materials used in these processes.   
 
Defining the signature – i.e. choosing the set of elements whose concentrations are to be 
determined in the method.   
 
Defining an objective metric for decision – i.e. a (scalar) quantity defined in terms of the 
elemental concentrations that can be used to decide if two samples are related or not.   
 
Characterizing the population – i.e. collecting elemental composition data on a set of 
bioagent materials generated by representative sampling of growth and preparation 
methods.  
 
Evaluating the “receiver-operating characteristic (ROC)” – i.e. determining the 
dependence of the false positive and false negative rates of the method on the value of the 
chosen metric.  
 
In this report, the term “validation” will refer to a two-phase process.  First, the 
performance of the test is evaluated on a set of samples drawn from a representative 
population of samples.  The test performance is expressed as a ROC curve.  In the second 
phase, the performance is validated by a blind test on a completely independent set of 
samples drawn from the same population, or from a related population.  This 
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evaluation/validation paradigm is explicitly adapted from the literature on clinical and 
medical diagnostics.  It should be noted that the definition of the sample “population” is 
one of the most critical steps in applying the evaluation/validation paradigm to the  
sample matching problem.   It is essential that the sample sets used in this process are 
chosen in a defensibly unbiased way.  This issue occupies a substantial part of the 
discussion in subsequent sections.  
 
We will begin by outlining a method of analysis based on a standard framework that uses 
the receiver-operating characteristic (ROC) and likelihood ratios.  An analysis of 
attribution that derives key quantities within this framework is contained in appendix 1.  
The application of this approach will then be demonstrated using recent data generated at 
Los Alamos National Laboratory based on samples generated at Lawrence Livermore 
National Laboratory.  It should be emphasized that this analysis is merely presented for 
illustrating the method, because the data set is severely limited in extent.  We then 
consider in more detail the nature of the “population” of growth and processing methods, 
and suggest a scheme for obtaining a representative set of samples for a more thorough 
evaluation and validation of the sample matching analysis method.   
 
 
2. A likelihood ratio framework for bioagent sample matching analysis 
 
In this section we describe a simple statistical framework for analyzing elemental data for 
purposes of drawing conclusions about the relatedness of samples.  The terms “process”, 
“batch”, “replicate batch”, “non-replicate batch” and “replicate sample” are used 
ubiquitously in this report and have the following definitions: 
 
Process – a recipe following a fixed set of instructions for producing the finished agent.  
For bacteria and viruses, this includes both growth and post-growth processing.  For 
biological toxins, it includes processes for extraction, purification and any subsequent 
chemical or physical treatment of the agent.  Processes are distinguished by the types and 
amounts of materials used to make the agent, including growth media, chemical 
additives, solvents, etc.; and by choices of physical methods such as separation, drying 
and milling.   
 
Batch – a single volume of material made from a single set of starting materials and 
following a fixed procedure (i.e. a “process”, defined above.)  For the case of a bacterial 
agent, a batch might be material produced from a single bench-top fermentation vessel, a 
set of shake flasks containing a common growth medium, or a set of agar plates poured 
from the same volume of prepared growth medium.  In the latter two cases, material 
pooled from a set of shake flasks or agar plates and subsequently processed together 
would certainly constitute a single batch.    
 
Replicate batches – A set of batches made by the same process where there is intentional 
duplication of materials and physical process parameters; material differences among 
replicate batches arise from un-intentional or uncontrolled changes in material quantities 
or parameters. 
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Non-replicate batches – A set of batches made by a common process, but where one or 
more factors are the result of independent choices among materials, equipment, or 
parameters not rigorously defined by the process description.  An example would be 
where a bacterial culture is grown by the same method in two independent laboratories, 
where each lab obtains its materials from independent sources, or the staff uses slightly 
different procedures as interpreted from the same description of the process.   
 
Replicate samples – samples drawn at random from a single batch of material, regardless 
of its homogeneity.   
 
In general, bulk elemental analysis of two bioagent samples could result in one of three 
possible decisions: 
 

• They were drawn from the same batch of original material.  We will refer to this 
hypothesis as B0 

 
• They were made by the same process (but possibly non-replicate batches, using 

starting materials from different sources or different lots, or with slightly different 
process parameters).  We will refer to this hypothesis as P0. 

 
• They were drawn from batches made by different processes.  This is simply the 

negation of the same process hypothesis, P0, but also clearly implies B0. 
 
There is also the possibility that the sample was made by pooling different batches, but in 
general it would be difficult to discern this by bulk analysis alone.  Techniques that can 
analyze single agent particles, such as PIXE or SIMS might be more appropriate, but we 
will not treat this problem here.  
 
An elemental analysis method like ICP-OES can measure the concentrations of a wide 
variety of elements down to ppb levels21 (depending on the element and sample size.)  
The set of concentrations of those elements (e.g. Na, K, Ca, Sr, Mn, Zn, …) define a 
characteristic “elemental concentration vector” associated with a sample.   The particular 
set of elements chosen for sample matching analysis must be determined, at least in part, 
by empirical considerations, such as which elements are highly likely to be above the 
detection limit for a given sample size for the chosen elemental analysis method.  Given 
the elemental concentration vectors V1 and V2 for samples 1 and 2, one can define a 
distance metric Δ12(V1,V2) to describe the difference between the elemental signatures of 
the two samples.   There are various ways that Δ12 can be defined, and we will choose a 
particular formula in the next section.  In any case Δ12 is the fundamental statistic that is 
used to decide if two samples are more or less likely to be related.   
 
The premise behind sample matching analysis is that Δ12 is materially relevant to the 
question of whether the two samples being compared came from the same source, i.e, 
from a common laboratory or a common batch of biological agent.  In Appendix 1 the 
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inferential power of an observation of Δ12 for two samples is described by the standard 
Bayesian formula  
 

O(L0|Δ12) = LR(Δ12)•O(L0)     (1) 
 
Where L0 is the hypothesis that the two samples originated in the same laboratory, and 
O(L0) and O(L0|Δ12) respectively are the prior and posterior odds that L0 is true.  Thus, the 
materiality test22,23 for the relevance of Δ12 in court is that LR(Δ12) >1.  An explicit 
analysis relating LR(Δ12) to the hypotheses L0, B0 and P0 are given in Appendix 1.   
 
The ultimate object of an evaluation/validation study is to show that the test procedure in 
question provides defensible (and useful) estimates of LR(Δ12).  To achieve this, it is 
necessary to obtain a set of samples that represent an unbiased sampling of a 
“population” of laboratories, processes, batches, and replicate samples, determine their 
elemental composition, and empirically determine the distributions of Δ12 values for the 
sub-populations of sample pairs that are and are not from the same batch or process.  The 
standard way to summarize this data is the receiver operating characteristic (ROC) 
curve24, which displays the probability of true positive findings against the number of 
false positives as the test statistic increases or decreases in value.  The value of LR can be 
estimated for any value of Δ12 from the ROC curve.  This approach has been adopted in a 
number of contexts where critical decision-making is dependent on the results of 
experimental tests, including clinical testing and medical diagnosis25-35.   
 
Note that in this scheme, legal testimony about the significance of a particular value of 
Δ12 never needs to state that there is a “match” between samples.  The relevant (and 
admissible) evidence is that the observed value of Δ12 increases (or decreases) by a 
certain amount the likelihood that the samples were drawn from the same batch or made 
by the same process.  Another advantage of the ROC curve approach to characterizing 
sample matching analysis is that objective criteria then exist for comparing to other tests 
(using different analysis methods or different definitions of Δ12) that have the same aim.   
 
The sets of test samples used to construct and validate the ROC curve are drawn from a 
selection of ML laboratories, each independently producing MB replicate batches of agent 
for each of MP distinct processes, where each batch is divided up into N replicate 
samples.  The structure of the conceptual ML x MP x MB source “population” is discussed 
in more detail in section 4.   We suggest an explicit scheme for an evaluation/validation 
study involving different laboratories and processes.  However, before describing this 
study, it is useful to apply the ROC analysis to some existing data to illustrate the method 
and to obtain some useful results to inform the plan.   
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3.  Application to some existing data 
 
The easiest way to illustrate the procedure outlined in the last section is to explicitly work 
through some existing data.  The data set we shall use is a set of elemental concentrations 
for a set of Bacillus thuringiensis israelensis (Bti) samples that were grown and 
processed using a variety of methods.  A summary of the preparation methods used for 
these samples is given in Table 1.  The elemental concentrations were measured by Tom 
Yoshida at Los Alamos National Laboratory using ICP-OES and presented at the 3rd 
quarterly review meeting of the NBFAC National Laboratory R&D program on January 
19th, 200636.  For convenience this data is presented in Table 2.   
 
Several points must be noted about this data set.  First, the sample matrix (Table 1) 
contains only part of the idealized NxMLxMBxMP set of samples discussed above.  All of 
the samples were made in one laboratory. (In the language of Appendix 1, the prior 
probability of L0 is unity.)  Seven distinct processes are represented.  Only one process 
has more than 1 batch associated with it, and there are no true replicate samples 
associated with any one batch.  The absence of analytical replicates is an unfortunate 
consequence of limited sample availability.  In the absence of a better estimator for 
variation among replicates we will use the data for acetone and lyophilized samples as if 
it were a replicate pair.  This effectively reduces the number of distinct processes to 4.  
While this data set is far too small to provide accurate assessment of a ROC curve for the 
sample-matching test, it is large enough to illustrate the method.   
 
Table 1.  Description of Bti samples used to generate the data in Table 3. 
Sample 

ID 
Date of 

manufacture 
Growth 
method 

Growth 
medium 

Washing method Drying 
method 

B1 06-01-04 Fermentor G SDS detergent +  
2x water wash 

Acetone 

B2 06-01-04 Fermentor G SDS detergent +  
2x water wash 

Lyophilization 

B3 06-21-04 Fermentor G SDS detergent +  
2x water wash 

Acetone 

B4 06-21-04 Fermentor G SDS detergent +  
2x water wash 

Lyophilization 

B7 09-20-04 Agar plate G 2x water wash only Lyophilization 
F2 10-18-04 Agar plate G Cascade detergent + 

2x water wash 
Lyophilization 

G2 10-18-04 Agar plate G Cascade detergent + 
2x water wash 

Acetone 

H2 10-18-04 Agar plate NB Cascade detergent +  
2x water wash 

Lyophilization 

I2 10-18-04 Agar plate NB Cascade detergent + 
2x water wash 

Acetone 

 
Although Yoshida presented a longer list of elements, Table 2 displays only the 14 
elements whose concentrations were the largest, and were detected in every sample.  
Some of these, like sodium, display little variation from process to process, while others 
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appear to have larger variations.  There is no reason to believe that the 14 elements 
chosen are the best or most efficient set for the sample-matching test.   
 
Table 2.  Elemental data from Yoshida (reference 36.) 

Concentrations (ppm) Element 
B1 B2 B3 B4 B7 F2 G2 H2 I2 

Na 4739 4057 3922 3356 5277 5542 3587 4625 5067 
Rb 0.1 0.09 0.35 0.3 0.25 0.2 0.19 0.91 1.2 
Mg 2844 6288 4510 5201 3166 3023 2990 3509 3600 
Ca 75829 81136 62745 87248 29024 23687 25411 22329 24000 
Ba 9.4 8.1 4.7 6.4 1 0.56 0.59 2.9 3 
Sr 12 12 8.1 11 16 2.2 2.1 101 105 
Al 2699 2403 1887 2037 1389 1266 1267 1481 1371 
Mn 31357 24630 18477 21433 3429 1082 1147 41 19 
Fe 3081 2840 1961 2685 237 126 90 80 80 
Cu 325 334 352 168 186 214 153 12 10 
Zn 3164 2825 2290 3195 347 178 171 65 79 
Ti 506 418 361 738 196 194 194 164 182 
Mo 1.5 1.1 0.88 0.84 0.4 0.3 0.24 0.21 0.21 
Pb 20 19 4 4.4 0.17 0.68 0.55 0.06 0.06 

 
Our analysis of this data is based on a pairwise distance estimator Δ12 defined by  
 

Δ12 = [4•N-1• Σ(1/σl)2(C1l – C2l)2/(C1l + C2l)2]1/2   (2) 
 
where the sum over l is over the N elements in the fingerprint, and σl

2 is a statistical 
weighting factor discussed below.   In this expression, normalization of the pairwise 
difference by the average of the pair helps to control for large changes in absolute 
concentration from element to element.  When C1l >> C2l or C2l >> C1l, the square of the 
difference divided by the sum approaches 1.  Thus, the maximum value that Δ12 can 
attain is  
 

Δmax = [4•N-1• Σ(1/σl)2]1/2       (3) 
 
The first issue that needs to be addressed is how to define and estimate the weighting 
factor σl

2. For each element l, σl
2 is an estimate the variance of the quantity dl defined by: 

 
dl = 2•(Cil – Cjl)/(Cil + Cjl)     (4) 

 
where i and j stand for independent pairs of data points drawn from the population of 
concentration values {Cil} for that element determined by the replicate measurements on 
a batch from a particular process.   (In the subsequent discussion, we will drop the index 
p since we will always be concerned with data from one particular process.) 
 
The best way to estimate this variance is by making measurements on a number of 
replicate samples from one batch each of a set of representative processes.  For each 
element l, this produces a set of concentration values {Cpil} that represent the variance 
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found in a single batch for each process p.  There are two sources for this variation: (1) 
analytical variation due to instrument noise or uncontrolled random procedural variations, 
and (2) actual sample variation between replicates from the same batch.  These two will 
typically be convoluted together.   
 
If there is not much variation among the measurements for a particular element, simple 
linearized error propagation can be used to estimate the variance in dl from the variances 
in the concentration values for that element.   
 

σl
2 = Var(dl) ≈ 2(1/Cl)2 • Var(Cl)    (5) 

 
However, if the variance for an element is apparently large, then a direct estimate must be 
determined by sampling pairs of concentration values drawn from {Cil}.   
 
It should be noted that implicit in this formulation is the assumption that the variations in 
elemental concentration among replicates is uncorrelated.  Thus, a more rigorous 
treatment would include the possibility of correlation.  As part of a more general 
validation exercise, replicate experimental concentration data should be tested to see if 
the variations in concentration among the elements are correlated or not.   
 
Since the data set in Table 2 has at most 2 “replicates” each for 4 of the 5 batches, it is 
not possible to estimate σl

2 in the prescribed way.  Instead, we have simply used the 
difference between the two “replicate” concentration values divided by their average, and 
then calculated the root mean square of these values over the 4 batches to generate a σl

2 

value for use in formula (2).  The results of these calculations are summarized in Table 3.  
Based on the σl

2 values in Table 3, the value of Δmax is determined to be 11.8.   
 
Table 3. Values used for estimating σl

2.  
2•|(C1 – C2)/(C1 + C2)| Element 

B1 & B2 B3 & B4 F2 & G2 H2 & I2 
σl

2 

Na 0.156 0.156 0.42 0.092 0.058 

Rb 0.106 0.154 0.052 0.28 0.029 

Mg 0.76 0.142 0.011 0.026 0.150 

Ca 0.068 0.32 0.07 0.072 0.029 

Ba 0.148 0.3 0.052 0.034 0.0289 

Sr 0 0.3 0.046 0.038 0.0234 

Al 0.116 0.076 0.00078 0.078 0.006 

Mn 0.24 0.148 0.058 0.74 0.158 

Fe 0.082 0.3 0.34 0 0.0531 

Cu 0.028 0.7 0.32 0.182 0.157 

Zn 0.114 0.32 0.04 0.194 0.0387 

Ti 0.19 0.68 0 0.104 0.127 

Mo 0.3 0.046 0.22 0 0.0351 

Pb 0.052 0.096 0.22 0 0.0151 
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Finally we used equations (2) and (3) to calculate the normalized quantity  
 

Δ = Δ12/Δmax       
 
for each pair of samples in Table 2.  This data is shown in Table 4. 
 
The data in Table 4 is used to generate a ROC curve for batch-matching in the following 
manner.  For each observed value of Δ, the number of sample pairs that had values less 
than or equal to Δ and were from the same batch (i.e. for which B0 was true) is tabulated.  
Similarly, for each observed value of Δ, the number of sample pairs that had values less 
than or equal to Δ and were from different batches (i.e. for which B0 was false) is 
tabulated.    The cumulative numbers of “true positives” and “false positives” thus 
associated with each Δ are then respectively divided by the total number of true positive 
pairs (4) and true negative pairs (32) represented in this data set.  By this process, each 
observed value of Δ has associated with it the fraction of true positives and fraction of 
false positives that would occur if we chose that value of Δ to be the criterion for 
deciding that the two samples were from the same batch.  By plotting the true positive 
values against the true negative values we generate the ROC curve shown in Figure 2.  
The same procedure involving the hypothesis P0 can be used to generate the ROC curve 
for process matching, shown in Figure 3.  
 
Table 5.  Normalized delta values (Δ) for pairwise sample comparisons. 

 H2 I2 F2 G2 B1 B2 B3 B4 B7 
H2 0 0.067 0.53 0.52 0.67 0.64 0.60 0.62 0.43 
I2  0 0.53 0.52 0.68 0.67 0.61 0.63 0.43 
F2   0 0.074 0.64 0.62 0.52 0.56 0.35 
G2    0 0.64 0.63 0.53 0.57 0.35 
B1     0 0.078 0.34 0.30 0.58 
B2      0 0.32 0.29 0.56 
B3       0 0.11 0.49 
B4        0 0.52 
B7         0 
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Figure 2, ROC curve for the batch-matching test generated from the data in Table 4. Also 
shown for convenience is the value of Δ associated with each pair of true and false 
positive fractions.   
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Figure 3.  ROC curve for process matching generated from the data in Table 4.  
 
It is clear from Table 4 that the values of Δ for pairs that came from the same batch are 
well separated from those that did not.  For values of Δ ≤ 0.11 there are no false matches, 
and all true positives are “detected.”  This is clearly reflected in the corresponding ROC 
curve of Figure 2, which has the characteristic shape of a “perfect” test.   Note that there 
is a relatively large gap between the largest value of Δ associated with B0 (0.11) and the 
lowest value of Δ associated with B0 (0.29).  In a larger, more diverse sample set it seems 
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possible that this gap would be much smaller, or perhaps disappear entirely and cause the 
ROC curve to take a more typical (“imperfect”) form. 
 
Note, on the other hand, that the data in Table 4 does not support quite as clear a 
separation of the Δ values for samples generated by different production methods. The Δ 
values for (B7,F2) and (B7,G2), which represent pairs that were not made by the same 
method, are very close to the Δ value for (B1,B3) which were.  While Δ ≤ 0.34 provides a 
clean separation between samples made by the same method, a larger sample population 
would almost certainly exhibit greater commingling of values for samples made by the 
same method and values of samples made by similar, but not identical methods.  In that 
case any choice of Δ might result in non-zero values for the false positive and false 
negative test probabilities.   
 
An unfortunate consequence of a ROC curve for perfect classification is that the 
likelihood ratio is effectively infinite when Δ is less than the threshold value and zero 
when Δ is greater than the threshold value.  (In general, LR(Δ) is the slope of the ROC 
curve.)  However, the point estimates of true positive and false positive probabilities for a 
given threshold value of Δ that are generated by the ROC curve are of little utility without 
estimates of their uncertainty.  A number of standard methods exist for estimating this 
uncertainty at a desired confidence level (usually taken to be 95%)37,38.  As an example, 
in Tables 5 and 6 we have generated estimates of confidence intervals for the conditional 
probability matrix for Δ ≤ 0.11 and Δ ≤ 0.34 respectively.   Tables 5a and 6a give the test 
results for classification into B0 and P0 respectively.  Estimators of the false positive and 
negative rates are nominally zero, but this is clearly not an accurate way to characterize 
the sensitivity and selectivity of the test, given the small size of the sample set. Therefore, 
confidence intervals for the conditional probability estimates were generated by using a 
web-based Bayesian method39, and are displayed in Tables 5b and 6b.   
 
In spite of its limited size and diversity, we can draw several conclusions from the dataset 
analyzed in this section.  First of all, it may be possible to obtain a very clean 
classification of samples into “same batch and “different batch” categories using the 
measure Δ12 defined in equation (2).   The results are consistent with the intuitive 
expectation that the false negative rate would be higher than the false positive rate for 
declaring that two samples come from the same batch.  Similarly, intuition also suggests 
that there would be a higher false positive rate for declaring two samples to have been 
produced by the same method, because not all methodological variants will affect the 
elemental composition. However, the small number of samples, limited number of 
batches and restricted range of processes contained in this data set preclude us from 
drawing more precise conclusions.  Clearly a more extensive validation study is required 
before this method can be used in a forensic application.   In the next section we will 
propose a plan for such a study. 
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Table 5a.  Summary of test results for Δ ≤ 0.11 and B0.  

Test results for 
Δ  ≤ 0.11 

 

Samples were made 
in the same batch 

 
(B0 is true)  

Samples were not 
made in the same 

batch 
 (B0 is false) 

# of test 
results 

Positive test results N = 4  N = 0 N(+) =  4 
Negative test results N = 0 N = 32 N(-) = 32 

Number of tests N(B0) = 4 N( B0) = 32 Ntotal = 36 
 
 
 
Table 5b.  Table of estimated bounds on the conditional probabilities for the “same 
batch” test, derived from Table 5a and 95% Bayesian confidence limits.   

 
 
 
 

Samples were made in the 
same batch 

 
(B0 is true) 

 

Samples were not made in 
the same batch 

 
(B0 is false) 

 
Positive test result 

 
(Δ  ≤ 0.11) 

 
P(Δ ≤ Δb| B0) ≥ 0.55 

 
True Positive 

 

 
P(Δ ≤ Δb|B0) ≤ 0.087 

 
False Positive 

 
 

Negative test result 
 

(Δ  > 0.11) 

 
P(Δ > Δb| B0) ≤ 0.45 

 
False negative 

 

 
P(Δ > Δb|B0) ≥ 0.913 

 
True negative 

 
 
 
Table 6a. Summary of test results for Δ ≤ 0.34 and P0. 

Test results for 
Δ  ≤ 0.34 

Samples were made 
by the same process 

 
(P0 is true)  

Samples were not 
made by the same 

process 
 (P0 is false) 

# of test 
results 

Positive test result 
(Δ  ≤ Δp) N = 8 N = 0 N(+) =  8 

Negative test result 
 (Δ > Δp) N = 0 N = 28 N(-) = 28 

Number of tests N(P0) = 8 N( P0) = 28 Ntotal = 36 
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Table 6b.  Table of estimated bounds on the conditional probabilities for the “same 
process” test, derived from Table 6a and 95% Bayesian confidence limits. 

 
 
 
 

Samples were made by the 
same process 

 
(P0 is true) 

 

Samples were not made by 
the same process 

 
(P0 is false) 

 
Positive test result 

 
(Δ  ≤ Δp = 0.34) 

 
P(Δ ≤ Δp| P0) ≥ 0.72 

 
True Positive 

 

 
P(Δ ≤ Δp|P0) ≤ 0.098 

 
False Positive 

 
 

Negative test result 
 

(Δ  > Δp  = 0.34) 

 
P(Δ > Δp| P0) ≤ 0.28 

 
False negative 

 

 
P(Δ > Δp|P0) ≥ 0.902 

 
True negative 

 
 
4. An experimental design for a sample matching validation study 
 
While the results in section 3 suggest that a useful sample-matching test can be based on 
the elemental profile of a biological agent sample, the limited nature of the sample set 
leads to considerable uncertainty about the true ROC curve for such a test.   This section 
discusses a potential method for determining better estimates of test performance.  The 
fundamental idea is to construct a more representative population of agent samples (using 
a B. anthracis surrogate that is much closer than B. thuringiensis) and to use samples 
from this population in two distinct phases of testing.  In the first phase, a set of samples 
are generated and analyzed to determine the ROC curve.   In the second phase, samples 
are randomly selected from well-characterized archival materials whose provenance is 
known, or generated independently from the original set, and blindly evaluated to 
validate the prior performance estimate.   
 
A. General considerations 
Before discussing more particular features of the validation process, it is of great value to 
review the potential sources of false positive and negative rates in sample matching 
analysis of biological agents.  Clearly, an unbiased design of the validation exercise must 
provide a fair chance that these causes of error are embodied in the experimental sample 
set.    Table 7 summarizes the potential reasons for errors in matching bioagent samples.  
Two sources of error included in this list, data errors (i.e. mistakes in calculation or 
recording of data) and contamination can be controlled if the laboratories that undertake 
such measurements have strict QA/QC procedures in place.  For purposes of this report, 
we will assume that these types of errors are improbable.   In addition, we assume that the 
cited sources of error are far more significant in practice than any errors that might arise 
due to intrinsic uncertainty in the measurement of elemental concentrations.  As pointed 
out in section 3, measurement uncertainty is folded in with the variance of elemental 
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concentrations determined from analytical replicates from the same batch of material.  
Note also that we have included for completeness the theoretical possibility that growing 
organisms such as bacteria may have mechanisms that control the maximum or minimum 
concentrations of certain trace elements within the cell.  Thus, in an extreme case, the 
concentrations of elements in an agent powder might be nearly independent of their 
concentrations in the starting materials.  We know of no such case in practice, but it does 
lead to the precaution that the organism used in the validation experiments be 
physiologically similar to the threat agent for which it is a surrogate.  The remaining 
errors will be the primary focus of our considerations.   
 
The exercise with the Bti samples suggests some additional points about decision errors 
in sample matching.  From our results in section 3 we anticipate that very few 
circumstances will make the signatures of two samples coming from different processes 
as similar as two samples drawn from the same batch.   In other words it is not very 
probable that there will be a fortuitous match between the (multi-element) signatures of 
two samples grown by very different methods.  However, samples made by certain 
growth medium formulations (e.g. G medium and Modified G medium, which differ only 
by the addition of glucose) may not be distinguishable, assuming that the medium 
components they have in common are drawn from the same lot.   Certain process 
differences may not lead to significant differences in the elemental composition of the 
agent.  For example, we know from the Bti samples that certain differences in drying 
procedure make very small changes in the elemental signatures.  Powder grinding is also 
a potentially neutral step as far as elemental signatures are concerned.  It may be 
necessary to restrict the scope of the test to a set of “distinguishable processes” and place 
certain variants into indistinguishable classes.     
 
We may also anticipate that there are a fair number of reasons that two batches of agent 
made by nominally identical processes could give significantly different elemental 
profiles.  Technicians are known to make unintentional alterations in medium preparation 
such as using poorly approximated mineral salt concentrations.  Accidental 
contamination with extraneous materials could alter the elemental profile of a bio-agent 
preparation.  Also, small unintentional differences in aeration or temperature conditions 
during growth could affect growth rate or sporulation time, and modify the uptake of 
trace elements by spores.   
 
Ideally, all of these potential sources of error and unintentional variation should be 
reflected in the sample set used to determine the ROC curves of sample matching tests.  
In practice, of course, it is not possible to predict the base rate for these errors, so it is not 
even possible to estimate the number of samples that would have to be generated to 
guarantee that such variation is fairly represented.    
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Table 7.  Possible reasons for false positive or false negative test results. 
Test Test Result 

Same Batch Same Process 
 
 
 

False positive 
(Declaring two samples to be 
drawn from the same batch or 

made by the same process when 
they are not.) 

 
• Tight control on the 

repeatability of medium lot, 
preparation procedure, and 
other process parameters  

 
• High uniformity in 

manufactured, premixed or 
pre-poured media 

 
• Extreme physiological 

“leveling” of trace element 
composition in microbe 

 

• Insensitivity of elemental 
composition to certain 
process steps, e.g. drying, 
washing (e.g. samples B7, F2 
and G2 from the Bti sample 
set.)   

 
• Similarity of certain unit 

processes, e.g. shake flask 
vs. fermenter.   

 
• Closeness of certain media 

formulations e.g. among 
Bacillus media in the same 
category (see Table xx).   

 
• Accidental, random identity 

in trace element composition 
of two different media 

 
• Moderate physiological 

“leveling” of trace element 
composition in microbe 

 
 
 
 

False negative 
(Declaring two samples to be 

drawn from different batches or 
made by different processes, 

when they are not.) 

 
• Inhomogeneity in a single 

batch + measurement 
variance.   

 
• Contamination 
 
• Errors in data analysis or 

data recording 
 

• Variation in elemental 
composition of starting 
materials, from source to 
source 

 
• Variation in sample 

preparation by the preparer.   
 
• Contamination 
 

 
 
B. The bioagent sample “population”. 
In forensic sample matching problems that involve the comparison of manufactured 
products like lead bullets, glass, or agricultural commodities, there is a real “background 
population” of materials, and the major concern is that databases or reference sample 
collections contain an adequate and up-to-date representation of this population.  In 
contrast, biological agents are not regularly manufactured, and there is an extremely 
limited real background population of already-made samples40.  Instead, the “population” 
is an imaginary construct, consisting of all possible ways that someone might go about 
making an agent.   In section 2 we introduced the idea of a fictitious sample population 
consisting of ML “laboratories”, MP possible processes, MB replicate batches from each 
process, and N replicate samples drawn from each of the different batches.  The problem 
is how to generate a set of real samples that adequately represents a statistically valid 
sample of this imaginary space of possibilities.  
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Within this space, not every process is equally likely.  Information from a variety of 
sources indicates that there are a countable number of processes that have been developed 
for growing and processing pathogens, and only a handful of these are “popular” among 
microbiologists engaged in biodefense work.  Knowledge of these recipes flows to other 
laboratories through publications and reports, or when personnel move from one 
laboratory to another.  Analysis of existing information indicates that when criminals or 
terrorists produce bioagents they draw upon existing information for growth and 
processing ultimately derived from Western open literature sources.  Thus, the prior 
probability of seeing certain recipes is higher than for others.  In the following discussion, 
we will restrict our attention to Bacillus anthracis production, recognizing that different 
considerations may apply to other microbial agents.  
 
A particular feature of Bacillus growth is that a wide variety of growth media can be 
used.  In addition to refined, commercial media (e.g. peptones, tryptones, glucose) less 
refined, complex medium formulations (e.g. corn steep liquor, molasses) can be used.  
The former are typical of bench-top fermentations in research laboratories, but may also 
be used at pilot scale in sophisticated industrial-scale state sponsored biological weapons 
programs, because it makes separation and purification of the agent easier.  Complex 
medium formulations are often used for manufacturing Bacillus thuringiensis (Bt) based 
insecticides, and could be readily adopted for B. anthracis production, especially in cases 
where a Bt plant is surreptitiously being used.  Table 8 summarizes this space of 
possibilities. 
 
Table 8.  Coarse-grained classification of B. anthracis growth medium formulations   

 Bench-top Large scale 

Simple media 

 
Most likely as 

terrorist or criminal 
activity 

 

 
Sophisticated pilot 
or industrial-scale 

state programs  
 

Complex media 

 
Less likely as 

terrorist or criminal 
activity 

 

 
Surreptitious 
conversion of 

industrial scale 
processes 

 
 
It can be argued that the most likely scenario for terrorist or criminal production of B. 
anthracis involves bench-top methods using commercial refined media that would 
typically be found in the research laboratories in which the perpetrators received their 
training, or mentioned in the literature that they can readily access.  Therefore, our 
discussion will focus on this situation.   
 
To better define the population of benchtop scale B.anthracis production methods from 
which to draw samples for a validation study, we have assembled information from 
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several sources: reports from threat assessment programs sponsored by the U.S. 
government, other reports, and open scientific literature.  A table describing the 
composition of 23 distinct growth medium formulations used to grow B. anthracis is 
contained in the Excel file MediumFormulation.xls that accompanies this report.  Table 
9 contains a summary of this data. The media can be roughly classified into 7 distinct 
classes according to the major nutrient sources they contain.  There were occasionally 
differences among the exact formulations quoted for some media, which is another 
potential source of variability in actual medium composition in practice.   
 
Table 9.  Summary of the 23 medium formulations found for B. anthracis growth. 

Designator Medium name Medium class # of citations 
BHI Brain-Heart Infusion Beef Heart Infusion 12 
LB Luria-Bertani Tryptone/Yeast Extract 10 

BAgar Bacto Blood Agar Beef Heart Infusion 7 
NSM New Sporulation Medium Tryptone/Yeast Extract 6 
TSB Tryptic Soy Broth Tryptone/Soy 5 
NB Nutrient Broth Peptone/Beef Extract 5 
G G Medium Yeast Extract/Ammonium 4 
R R Medium Chemically Defined 4 

ModG Modified G Medium Yeast Extract/Ammonium 3 
NBY Nutrient Broth-Yeast Extract Peptone/Beef Extract 3 
LD Leighton-Doi Peptone/Beef Extract 3 

SSM Schaeffer’s Sporulation Medium Peptone/Beef Extract 3 
MFA Modified FA Medium Tryptone/Yeast Extract 2 

CADM Casein Acid Digest Medium Casein/Yeast Extract 2 
CDSM Chemically Defined Sporulation 

Medium 
Chemically Defined 1 

Liu Liu Medium Yeast Extract/Ammonium 1 
MM Miller-McBride Medium Tryptone/Yeast Extract 1 
PA Protective Antigen Medium Tryptone/Yeast Extract 1 

NBA FAO Nutrient Broth Agar Peptone/Beef Extract 1 
NSMP NSMP-Modified Casamino acid media 1 
CDAM Casein Digest Agar Medium Casein/Yeast Extract 1 

ATCC573 ATCC Bacillus Medium 573 Yeast Extract/Ammonium 1 
ATCC552 ATCC Bacillus Medium 552 Peptone/Beef Extract 1 

 
Furthermore, we have estimated rough measures of how “popular” a given medium is by 
counting the number of times the use of each medium formulation has been cited by 
independent laboratories.   This was accomplished by searching PubMed for papers 
referencing “B. anthracis” in conjunction with a number of other terms, such as 
“vaccine”, “sporulation”, “expression”, and “detection” and choosing the citations with 
freely available pdf files.  These papers were then searched manually for any information 
on growth media used to culture B. anthracis or near neighbor surrogates including 
vaccine strains, B. cereus, and B. thuringiensis.  Multiple references to a particular 
growth medium by the same research group were only counted as a single reference41.  In 
addition, some general references on growth media and some specialty publications were 
consulted.  The results in Figure 4 are the number of independent references found for 
each type of growth medium, a total of 78 references being found in this “random” 
search.   Table 9 provides the key to the medium designators used in Figure 4.  
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The first 8 medium formulations (BHI, LB, BAgar, NSM, TSB, NB, G, and R) 
encompass 68% of the citations, while four additional formulations (ModG. NBY, LD, 
and SSM) encompass an additional 15%.  The remaining 11 formulations account for 
only 17% of the citations, and appear to be seldom used within the microbiological 
community.  
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Figure 4.  Distribution of 78 citations of various growth media used to  
grow B. anthracis or very near neighbors.   
 
A variety of post-growth processes have been used for separating, washing, and drying 
Bacillus preparations subsequent to culture.  In order to assess the “popularity” of each 
unit process step we surveyed a variety of reports and consulted with a limited number of 
experts in this area.  Table 10 contains rough estimates of the statistical weight associated 
with various unit process steps derived from our survey.  This table is a greatly simplified 
representation of the process choices that are available.  Several more sophisticated 
methods for separation have been left out because they do not appear to be widely used at 
the bench-top scale.  In addition, certain steps, such as detergent washing, encompass a 
variety of choices that are not captured here.  Similarly, the weights assigned to each step 
are tendered with a great deal of uncertainty based on the limited sampling we were able 
to accomplish.  Nonetheless, we believe that Table 10 is sufficiently representative to 
demonstrate the approach, and provides a basis for future refinement of this data.   
 
A crude representation of the prior statistical weight of any given preparation method is 
simply the product of the weights associated with the choice of growth medium, growth 
method, separation method, washing and drying steps.  This would be accurate if such 
choices were, in fact, independent.  However, in reality end-to-end processes are usually 
treated as a whole, and thus it could be expected that many choices of individual process 
steps would be highly correlated.  However, in the absence of a better base of 
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information, the assumption of independence at least has the virtue of increasing the 
diversity of the validating sample set.   
 
Table 10.  Unit process steps and estimated statistical weights for Bacillus preparations. 

Growth 
method 

Separation Detergent 
wash 

Water 
wash 

Drying 

Agar plate   0.4 Centrifuge     0.75 No          0.75 2x  0.25 Lyophilize    0.75 
Shake flask 0.4 Flocculation  0.25 Yes         0.25 5x  0.75 Acetone         0.25 
Fermentor   0.2 - - - - 

 
Combining the information in Table 9 with that in Table 10 and ordering the product 
probability associated with each process from largest to smallest, one can arrive at a list 
that crudely represents the weighted population of processes for producing B. anthracis 
powders. In the present case, we have constructed such a list omitting the drying process, 
since this is known to have a very small affect on elemental composition.  In addition, 
this list was edited to remove some entries that, for certain reasons, would be much less 
likely than the simple product of probabilities would imply.  For example, the medium 
blood agar (BAgar) is clearly only associated with growth on agar plates, and not with 
shake flask or fermentor growth.  Similarly the use of flocculants to separate spores from 
spent medium is exclusively used when growth is in liquid culture, not agar plates.  With 
these amendments, the first 30 entries of this list are given in Table 11. It should be noted 
that fermentor growth appears only twice in this list as a consequence of its low 
probability relative to agar plate and shake flask growth.   
 
The full list of processes is provided in an Excel spreadsheet Processes.xls that 
accompanies this report.  This ordered list is a basis for selecting processes to generate 
samples used to validate the sample matching method.  The statistical weight (product of 
probabilities) of each method is used to change the relative probability of selecting it at 
random from the entire “population” represented by the list.   While the list in 
Processes.xls may leave out some plausible processes, it can be argued that it covers the 
most likely methods that would be used to produce B. anthracis preparations and 
represents a reasonable estimate of their relative likelihood.  
 
We have used the built-in random number generation tool provided by Excel to generate 
a list of randomly sampled processes.  The “Discrete” distribution type was selected, with 
the product probabilities associated with each process used to weight the selection.  Table 
12 contains the first 10 randomly selected processes.   
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Table 11.  The 30 “most likely” process choices for Bacillus production.  Key: A – Agar 
plates; S – shake flask; F – Fermentor; C – centrifuge; P – flocculation; N – no detergent; 
Y- detergent used; 5 – wash 5x with water; 2 – wash 2x with water. 

Medium Method Separation Detergent Wash 
BHI A C N 5 
BHI S C N 5 
LB A C N 5 
LB S C N 5 

Bagar A C N 5 
BHI F C N 5 
NSM A C N 5 
NSM S C N 5 
BHI A C N 2 
BHI S C N 2 
TSB A C N 5 
TSB S C N 5 
NB A C N 5 
NB S C N 5 
LB F C N 5 
LB A C N 2 
LB S C N 2 
BHI A C D 5 
BHI S C D 5 
BHI S P N 5 
G A C N 5 
G S C N 5 
R A C N 5 
R S C N 5 

LB A C D 5 
LB S C D 5 
LB S P N 5 

ModG A C N 5 
ModG S C N 5 
NBY A C N 5 
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Table 12.  The first 10 randomly selected production processes (Key same as in Table qq) 
Process #a Medium Method Separation Detergent Wash 

1 BHI A C N 5 
89 ModG A C N 2 
21 G A C N 5 
96 SSM S C N 2 
5 Bagar A C N 5 

53 NSM A C D 5 
48 LB F C N 2 
74 LB F P N 5 
29 ModG S C N 5 
16 LB A C N 2 

aFrom the full ordered list in Processes.xls. 
 
 
C.  Constructing the set of test samples 
The connection between sample matching and attribution described in Appendix 1 
implies that there are particular “sub-populations” of pairs of test samples that must be 
included in any validation study.  These “sub-populations correspond to hypotheses 
regarding the possible origin of the sample pairs and are summarized in Table 13. 
   
Table 13.  Partitioning of the test sample space derived from Appendix 1. 

Test sub-population Hypothesis from 
Appendix 1 Comment 

Pairs of samples drawn from the same batch of 
material produced in a given laboratory B0L0 

Pairs of samples drawn from different batches 
of material produced in the same laboratory B0L0 

The union of these two 
populations represent pairs of 

samples drawn from batches of 
material made in the same 

laboratory. 
{B0L0} ∪ {B0L0} ≡ {L0} 

Pairs of samples drawn from two different 
batches of material made in two different 

laboratories 
B0 L0 ≡ L0 

The set of samples drawn from 
the same batch produced in 

different laboratories is the null 
set. 

B0 L0 ≡ ∅  
Pairs of samples drawn from batches made by 

the same process in the same laboratory  P0L0 

Pairs of samples drawn from batches made by 
the same process in different laboratories  P0L0 

The union of these two 
populations represent pairs of 

samples drawn from batches of 
material made by the same 

process 
Pairs of samples drawn from batches made by 
two different processes in the same laboratory  P0L0 

Pairs of samples drawn from batches made by 
two different processes in different laboratories P0L0 

The union of these two 
populations represent pairs of 

samples drawn from batches of 
material made by different 

processes 
 
A sample set that captures these sub-populations in an unbiased way can be constructed 
by the following procedure:  First, three or more processes are selected at random using 
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the weighted “population” of processes described in the previous section.  Secondly, 
three or more independent laboratories are selected to produce batches of material using 
the selected processes.  A partial factorial design that reduces the total number of batches 
produced, but retains symmetry is shown in Table 14. 
 
Table 14. A 3 x 3 partial factorial design for sample production. 

   Lab 1 Lab 2 Lab 3 # batches per 
process 

Process 1 
Batch 1 
Batch 2 
Batch 3 

Batch 5 
Batch 6 Batch4 6 

Process 2 Batch 4 
Batch 1 
Batch 2 
Batch 3 

Batch 5 
Batch 6 6 

Process 3 Batch 5 
Batch 6 Batch 4 

Batch 1 
Batch 2 
Batch 3 

6 

# batches per 
lab 6 6 6 Total # of 

batches = 18 
 
Ideally, the laboratories would be selected at random from a larger pool of potential 
participants.  Identical descriptions of the chosen processes are communicated to each 
lab, but the laboratories are conceived of as autonomous entities making independent 
choices of vendors and particulars of execution.  A conservative bias could be introduced 
by suggesting to each lab that the similarity of the replicate batches is of high value to the 
exercise.   It is assumed that, faced with the task of producing identical batches, a 
laboratory worker would plan to purchase sufficiently large lots of medium or numbers of 
pre-poured agar plates to complete the task when these are commercially available.   
Finally, it should be noted that the laboratories need not be physically distinct, but could 
conceivably involve different persons working in a common lab.   
 
From each of the 18 batches, three replicate samples could be drawn for elemental 
analysis, leading to 54 separate elemental “vectors.”  This is the basic block of data that 
underpins the evaluation/validation procedure outlined in the next section.  Appendix 2 
provides an explicit accounting of the sizes of the various sub-populations of pairwise 
comparisons generated by this data set.   
 
D. Validating the ROC curve(s) 
 
Appendix 1 demonstrates that there are two different ROC curves that are necessary to 
characterize the evidentiary power of a batch-matching test.  One of these plots involves 
P(Δ ≤ Δb|B0L0) versus P(Δ ≤ Δb|B0 L0)  while the other involves P(Δ ≤ Δb|B0L0) versus P(Δ 
≤ Δb|B0 L0).  The data block generated by the procedure outlined above ought to have 
sufficient size to provide a reasonable representation of each curve.  The process of 
validation then consists of independently generating a set of samples from the same 
population (in this case the population of bench-top B. anthracis production processes), 
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performing elemental analysis on them, and comparing the ROC curves from that set to 
the previous curves. In the validation phase, the analyst should be “blinded” with respect 
to the origin of the samples, and the elemental analysis results should be reported in a 
coded fashion.  The analysis of this data can be done in two ways.  The first way is to use 
the existing ROC curve to make decisions about the validation set based on a chosen 
threshold value.  Then the number of false positives can be compared to the number 
predicted by the ROC curve.  The second way is to construct a ROC curve from the 
validation data itself, which is the preferred approach if there is sufficient data. 
 
There are several approaches to comparing ROC curves35,42.  One method is to fit the 
curves to a parametric form and then compare the parameter values to see if they are 
statistically different.  Another method involves comparing the area under the ROC 
curves, which is a measure of the discrimination power of the test.  At any value of the 
cutoff parameter Δb we can also test to see if the new probabilities are significantly 
different from the old by using a chi-squared test.  In any case, the validation process can 
be iterated by using the validation set to “update” the ROC curve, and then testing the 
new curve against a new (independent) data set.  The expectation is that the empirical 
ROC curve would converge on a form that best represents the performance of the test on 
the target population. 
 
There are several potential ways to generate the set of samples used in the validation 
phase.  One way would be to use existing archival samples that may be available from 
other laboratories.  Another way is to use an independent block design similar to the one 
described in section 4C, where laboratories and processes are again randomly chosen 
from the available “population.” Alternatively, this can be done by using a series of 
several smaller block designs, e.g 2x2 versions of the 3x3 scheme in 4C.  Ideally, the 
validation set would be similar in size to the set used to initially evaluate the ROC curves.  
 
 
5.  Concluding remarks 
 
The intention of this report is to outline an approach to evaluate and validate sample-
matching tests using elemental analysis as an example.  An important feature of the 
chosen approach is the adoption of a framework that does not involve defining a “match”, 
but relies instead on estimating a likelihood ratio for any value of a defined pairwise 
comparison metric determined by elemental analysis.  This philosophy is consistent with 
modern concepts of trace evidence analysis and with recommendations emanating from 
recent National Research Council studies on several forensic science issues. 
 
There are numerous ways that the specific steps described here could be modified and 
possibly improved.  For example. it is important to note that several segments of the 
larger “population” of B. anthracis production methods were left out of the treatment in 
this report.  It is likely that these population segments would exhibit somewhat different 
ROC curves due to the increased variability associated with complex medium 
components and the increased chance for inhomogeneity among samples from large-scale 
production runs. In addition, even the set of bench-top processes considered here 
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deliberately excludes a number of less likely processes.  More extensive polling of both 
the literature and active research groups might provide a more accurate picture of the 
“population” of B. anthracis processes.  It is also important to emphasize that the 
production of other agents, such as F. tularensis or Y. pestis, involve different types of 
growth media and post-growth processes.  
 
It may be possible to construct improved classifiers that work better than Δ12 as defined 
above.  For example, principal components analysis (PCA43) could be applied to the 
elemental concentration vectors to produce a variant of Δ12.   Given vectors of elemental 
concentrations on a reference set of agent samples prepared by a variety of methods, the 
first principle component is a linear combination of the concentrations of the elements 
that exhibits the most variation over the set of samples.  Let C1n and C1m be the first 
principle components of the concentration data for two samples n and m.  A metric for 
judging how similar the two samples are is: 
 

Δmn = 2(C1n – C1m)/(C1n + C1m)     
 
By determining Δmn for pairs of samples from the same batch, replicate batches, non-
replicate batches and from different processes, it should be possible to select a decision 
criterion (i.e. Δmn ≤ Δ0) for declaring that two samples are drawn from the same batch or 
were produced by different methods.  Since this procedure uses the multi-element 
signature that shows maximum variation over the “population” of samples, the decision 
criteria so determined are conservative quantities.   
 
Principle component analysis can also be used to decide if certain subsets of elemental 
concentrations are better than others for capturing the variability of elemental 
composition among agent samples. This is useful if it is desirable to reduce the number of 
elements that must be analyzed, or if one is comparing the merits of two different 
analytical methods that measure different sets of elements.  A description of this 
procedure as applied to the bullet lead analysis problem is provided in reference 7. 
 
The sample set that would be generated by the plan outlined in section 4 would also be 
useful for validating the use of other types of measurements for sample matching.   For 
example, isotopic signatures could easily be evaluated by the same kind of approach, 
assuming a suitable metric analogous to Δ could be formulated.  Approaches based on the 
morphology of samples may also be feasible if an objective metric could be formulated.   
Finally, the sample set outlined above could also contribute to the evaluation and 
validation of other SOPs e.g. analyses that aim to detect residual agar.  
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Appendix 1.  Source Attribution 
 
Consider the case where a questioned sample is compared to an agent sample (the 
“source sample”) found at a possible source lab, and a certain value of the test statistic 
Δ is obtained.  Given the possibility of a false match, what is the likelihood that the 
questioned sample came from the suspect lab?  Let L0 be the hypothesis that the 
questioned sample was made in the same lab as the source sample, and L0 the hypothesis 
that it was made elsewhere.  The odds that the questioned sample comes from the suspect 
lab given that the elemental vectors of the questioned and source sample pair differ by Δ 
is given by: 
 

O(L0|Δ) = [P(Δ|L0)/P(Δ|L0)] • O(L0)    (A1.1) 
 
where O(L0) are the prior odds that the questioned sample came from the suspect lab, 
which depend on other evidence.  (For example, O(L0) might be considered very low if 
the laboratory in question followed a strict biosurety program and no other evidence 
pointed to possible theft of the existing stock material1.   Similarly, O(L0) might be 
considered very high if the lab in question were found in the domicile of a person 
suspected of the crime for other reasons.)  The quantity in brackets in equation (A1) is the 
likelihood ratio that expresses the strength of the evidence that the value of Δ provides to 
support the assertion that the lab is the source of the questioned sample.   
 

LR(Δ) = P(Δ |L0)/P(Δ|L0)     (A1.2) 
 
Strictly speaking, a sample-matching test for bioagents provides evidence for two 
samples originating from the same batch of material (B0) rather than from the same 
laboratory.  Thus it is necessary to formally relate the likelihood ratio (A2) to the 
probabilities of match and false match given B0 or B0.  An important consideration in 
relating Δ, B0 and L0 is that the laboratory in question may have made many batches of 
the bioagent, and not all of them may be available for testing.  Using the chain rule for 
conditional probabilities we can write: 
 

P(Δ|L0) = P(Δ|B0L0)•P(B0|L0) + P(Δ|B0L0)•P(B0|L0)   (A1.3) 
 
and  
 

P(Δ|L0) = P(Δ|B0L0)•P(B0|L0) + P(Δ|B0 L0)•P(B0|L0)   (A1.4) 
 
The definitions of the various probability functions that are factors in equations (A3) and 
(A4) are given in table A1.1.   
 
These expressions refer to 3 possible sub-populations of samples: 
 
{B0L0}  the set of pairs drawn from the same batch, made in the same laboratory; 
 
{B0L0}  the set of pairs drawn from the different batches, made in the same laboratory; 
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and {B0 L0}  the set of pairs drawn from different batches made in different laboratories. 
 
The fourth set {B0L0} is an empty set, since two samples made in different laboratories 
clearly cannot come from the same batch.   It is important to note, that samples drawn 
from different batches can come from batches made by identical or different processes. In 
set notation: 
 

{B0L0}  = {B0P0L0} ∪ {B0 P0L0} and {B0 L0} = {B0P0L0}∪ {B0 P0L0}.  
 
Using the values given in the table, note that: 
 

P(Δ|L0) = P(Δ|B0L0)•(1/MB) + P(Δ|B0L0)•(1 – 1/MB)   (A1.5) 
  
and  

P(Δ|L0) = P(Δ|B0 L0)      (A1.6) 
 
Table A1.1  Quantities used in the analysis of attribution. 

Quantity Definition A priori value 

P(Δ|B0L0) 
Probability that the two samples will 
have the observed Δ value if they are 
from the same batch of material from 

the suspect lab 

Empirically determined by 
measurements on samples made 
in the same laboratory 

P(Δ|B0L0) 
Probability that the two samples will 
have the observed Δ value if they are 
not from the same batch of material, 

but are from the suspect lab 

Empirically determined by 
measurements on samples made 
in the same laboratory, but from 
different batches and processes. 

P(B0|L0) 
Probability that the questioned sample 
was drawn from the same batch as the 
suspect source sample, given that they 

both come from the same lab 

1/MB  
where MB is the number of 
independent batches made by the 
laboratory in question 

P(B0|L0) 
Probability that the questioned sample 
was not drawn from the same batch as 
the suspect source sample, given that 

they both come from the same lab 

 1 – 1/MB 

P(Δ|B0L0) 
Probability that the two samples will 
have the observed Δ value if they are 
from the same batch of material and 

they come from different labs 

Undefined  
(The same batch of material 

cannot originate in different labs.) 

P(Δ|B0 L0) 
Probability that the two samples will 
have the observed Δ value if they are 
from different batches of material and 

they come from different labs 

Empirically determined by 
measurements on samples made 
in different laboratories, from 

different batches and processes 

P(B0|L0) 
Probability that the questioned sample 
was drawn from the same batch as the 
suspect source sample, given that they 

came from different labs 

0 

P(B0|L0) 
Probability that the questioned sample 
was not drawn from the same batch as 
the suspect source sample, given that 

they came from different labs 
1 
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If the suspect lab made only a single batch of the material in question (MB = 1) then the 
probability of observing Δ given that the samples came from the same lab is clearly the 
same as observing Δ if the samples came from the same batch.  In this case the likelihood 
ratio in equation (A2) simply becomes: 
 

 LR(Δ) = P(Δ|B0L0)/P(Δ|B0 L0).      (A1.7) 
 
However, if the lab made many independent batches of material (i.e. MB >> 1), the 
likelihood ratio will primarily depend on the probability of observing Δ among different 
batches made in the same lab, and  
 

LR(Δ) ≈ P(Δ|B0L0)/P(Δ|B0 L0).      (A1.8) 
 
Because batches made in one lab are liable to be replicate batches while batches made in 
different laboratories are liable to be non-replicate even when made by the sample 
process, we expect  
 

P(Δ|B0L0) > P(Δ|B0 L0)      (A1.9) 
 
for some range of Δ values.  Thus it is still possible to have probative weight to a given 
value of Δ even if a lab made many batches of agent and some are not available for 
testing.  
 
In summary, the probative value of a given value of Δ is bounded by two limits (A1.7) 
and (A1.8) representing the cases where we are certain the lab produced only one batch 
of the material in question, and where the lab may have produced many batches of 
material.   
 
The ROC curves described in section 2 of the main text are defined in terms of the 
marginal probabilities 
 

P(Δ ≤ Δb|B0L0) = ∫ P(Δ′|B0L0)dΔ′,    (A1.10) 
 
 
 

P(Δ ≤ Δb|B0L0) = ∫ P(Δ′|B0L0)dΔ′,    (A1.11) 
 
and 
 

P(Δ ≤ Δb|B0 L0) = ∫ P(Δ′|B0 L0)dΔ′.    (A1.12) 
 
 

0 

Δb 

0 

Δb 

0 

Δb 



April 21, 2006 
Page 35 of 41 

The likelihood ratios in (A1.7) and (A1.8) can therefore be expressed as the derivative of 
the relevant ROC curve, e.g. 
 

P(Δ|B0L0)/P(Δ|B0L0)= dP(Δ ≤ Δb|B0L0)/dP(Δ ≤ Δb|B0L0)  (A1.13) 
 
The analysis above implies that there are 2 separate ROC curves that need to be 
determined in order to estimate the likelihood ratios (A7) and (A8).  One of the ROC 
curves, P(Δ ≤ Δb|B0L0) versus P(Δ ≤ Δb|B0L0), involve batches made in the same 
laboratory.   A conservative point of view is that batches of material made at the same 
laboratory are more likely to be replicate batches, and to use only one process, so that 
these quantities are conservatively estimated from experiments on sets of replicate 
batches.  The most conservative estimate of the marginal probability, P(Δ ≤ Δb|B0L0), is 
obtained by having all replicate cultures made in one laboratory by one person, using the 
same lot of medium components or a pre-manufactured batch of growth medium, and 
carefully implemented quality control steps.   
 
The other required ROC curve is P(Δ ≤ Δb|B0L0) versus P(Δ ≤ Δb|B0 L0), which deals with 
samples made in different laboratories.  The latter quantity is conservatively estimated 
from measurements on non-replicate batches of material made independently, but by the 
same process.  Note that the joint hypothesis B0L0 is equivalent to B0 alone since the 
same batch of material must be made in the same laboratory.  However, as noted above 
there is a distinction between multiple batches made at the same laboratory and batches 
made at different laboratories, i.e. between B0L0 and B0 L0.  In section 4 of this report we 
follow the prescription suggested in this appendix that B0L0 is conservatively represented 
by replicate batches, while B0 L0 is conservatively represented by non-replicate batches, 
whether or not they are actually made in different laboratories.    
 
In general, the finding that two samples were made by the same process (P0) has far less 
probative value in associating the questioned sample with a given laboratory, unless the 
process can be uniquely associated with that laboratory.  Expanding the likelihood ratio 
for a match in terms of P0 rather than B0, the analogues to equations (A1.3) and (A1.4) 
become:  
 

P(Δ|L0) = P(Δ|P0L0)•P(P0|L0) + P(Δ|P0L0)•P(P0|L0)   (A1.14) 
 
and  
 

P(Δ|L0) = P(Δ|P0L0)•P(P0|L0) + P(Δ|P0L0)•P(P0|L0)   (A1.15) 
 
P(P0|L0) is the probability that two samples were made by the same process if they were 
made in the same laboratory.  If other evidence made it highly likely that the suspect lab 
used only a single process to make bioagent material (i.e. P(P0|L0) ≈ 1) then the 
probability of observing Δ given that the samples came from the same lab is clearly the 
same as observing Δ if the samples were made by the same process (i.e. P(Δ|L0) ≈ 
P(Δ|P0L0).  Similarly, if it is highly unlikely that a different laboratory might use the same 
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process to generate agent, then P(P0|L0) ≈ 0  and P(Δ|L0) ≈ P(Δ|P0L0). In this case the 
likelihood ratio in equation (A2) simply becomes: 
 

 LR(Δ) = P(Δ|P0L0)/P(Δ|P0L0).      (A1.16) 
 
Because the probability of obtaining a value of Δ with two different processes used by 
one lab is the same as the probability for processes used by any lab, we expect  
 

P(Δ|P0L0) ≈ P(Δ|P0L0),     (A1.17) 
 
and the likelihood ratio becomes, simply: 
 

LR(Δ) = P(Δ|P0)/P(Δ|P0).      (A1.18) 
 
In the more general case where it is possible that different processes may have been 
carried out in the same laboratory, the likelihood ratio is more difficult to calculate 
exactly, but it may be possible to argue that a process matching test still has probative 
value (i.e. LR(Δ) >1).  This will be true if the P(Δ|P0L0) and P(Δ|P0L0) are sufficiently 
small compared to P(Δ|P0L0) and P(Δ|P0L0) and we accept the proposition that P(P0|L0) > 
P(P0|L0).   
 
Table A1.2.  Probabilities associated with process matching. 

Probability Definition 

P(Δ|P0L0) 
Probability that the two samples will have the observed Δ 

value given that the samples were made by the same process 
in the same laboratory 

P(Δ|P0L0) 
Probability that the two samples will have the observed Δ 

value given that the samples were made by the same process 
in different laboratories 

P(Δ|P0L0) 
Probability that the two samples will have the observed Δ 

value given that the samples were made by different 
processes in the same laboratory 

P(Δ|P0L0) 
Probability that the two samples will have the observed Δ 

value given that the samples were made by different 
processes in different laboratories 

P(P0|L0) 
Probability that two samples were made by the same 

process, given that they were made in the same laboratory 

P(P0|L0) Probability that two samples were made by different 
processes, given that they were made in the same laboratory 

P(P0|L0) Probability that two samples were made by the same 
process, given that they were made in different laboratories 

P(P0|L0) 
Probability that two samples were made by different 

processes, given that they were made in different 
laboratories 

 
Another case where the likelihood ratio takes a simpler form is where there is essentially 
only one process that can be used to make the bioagent.  Such a situation may exist for 
certain fastidious bacterial agents.  In this case,  
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P(P0|L0) ≈ P(P0|L0) ≈ 1       (A1.19) 

 
And the likelihood ratio reduces to : 
 

LR(Δ) = P(Δ|P0L0)/P(Δ|P0L0).      (A1.20) 
 
Since we expect that the probability of finding a match between two samples made by a 
given process in the same lab is higher than the probability of a match between samples 
made in different labs, even when made by the same process, the likelihood ratio will be 
greater than 1 and a process match will have some probative value towards attribution. 
 
To summarize this discussion, the relevant conditional probabilities associated with 
process matching are given in Table A1.2.   
 
 
1There are several reasons why a legitimate bio-defense laboratory might have small amounts of biological 
agent at hand.  First, the material might be required to challenge vaccine candidates or to test the efficacy of 
other kinds of treatments for exposure to the agent.  Second, the material might be required for “gold 
standard” testing of new detection technologies.  Finally, the material may have been generated as part of a 
threat assessment program and has been retained for reference purposes.  Although recent increases in 
biosurety measures have made it less probable that such material could be stolen for purposes of 
bioterrrorism, it is nonetheless a possibility that cannot be ignored in practice.   
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Appendix 2.  Subpopulation size in the 3x3 partial factorial design 
 
In section 4 the sample set is generated by drawing 3 replicate samples from each of the 
18 separate batches, leading to 54 individual samples for analysis.  This leads to 1431 
possible pairwise comparisons of the elemental vectors.  (If there are n samples then the 
number of pairwise comparisons is 1/2n(n-1).)  This set of pairwise sample comparisons 
can be broken down into sets of pairs drawn from the various categories described in 
appendix 1: e.g. pairs drawn from the same batch (B0L0), from different batches produced 
in different labs using the same process ( L0P0), etc.   
 
First consider pairwise comparisons of samples produced in the same laboratory. Table 
A2.1 represents the matrix of pairwise comparisons of samples produced by 3 different 
processes at a given laboratory.  
 
Table A2.1.  Matrix of pairwise comparisons for samples produced in the same 
laboratory. 

  Process 1 Process 2 Process 3 

  Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 
Batch 1 L0P0 L0P0 L0P0 L0P0 L0P0 L0P0 
Batch 2  L0P0 L0P0 L0P0 L0P0 L0P0 

Process 1 

Batch 3   L0P0 L0P0 L0P0 L0P0 
Batch 4    L0P0 L0P0 L0P0 Process 2 
Batch 5     L0P0 L0P0 

Process 3 Batch 6      L0P0 
 
In the cells along the diagonal (shaded pink) we are comparing samples from the same 
batch.  Thus, there are three unique sample pairs per cell.  The total number of such 
comparison pairs in the entire set is given by 3 pairs per cell x 6 cells per laboratory x 3 
laboratories = 54 pairs.     
 
The blue shaded cells represent pairs drawn from different batches made by the same 
process.  There are 9 unique pairings per cell, leading to 9 x 4 x 3 = 108 such sample 
pairs in the entire set.  Thus the total number of pairs drawn from the same process in the 
same laboratory (L0P0) is 108 + 54 = 162.   
 
The remaining 11 cells (yellow) represent pairs drawn from batches made by different 
processes, for which there are 9 x 11 x 3 = 297 pairs.   
 
For each process, we can consider the comparison of samples made by the same process 
in different laboratories.  These are given in Table A2.2. 
 
Each of the 11 cells represent 9 unique pairwise comparisons, so for the 3 processes we 
have 9 x 11 x 3 = 297 pairs in the set {L0P0}.   
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Table A2.2.  Pairwise comparisons of samples made in different laboratories using the 
same process. 

Lab1 Lab 2 Lab 3  
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 

Batch 1    L0P0 L0P0 L0P0 
Batch 2    L0P L0P L0P 

Lab 1 

Batch 3    L0P L0P L0P 
Batch 4      L0P Lab 2 
Batch 5      L0P 

Lab 3 Batch 6       
 
For each pair of processes, we can construct the matrix describing the pairs of samples 
comparing different processes at different laboratories.  This is shown in Table A2.3 for 
processes 1 and 3.  There are 25 cells in this matrix, each representing 9 unique pairwise 
comparisons.  Since there are 3 unique pairs of processes, the total number of 
comparisons in the set {P0 L0} is 25 x 9 x 3 = 675.   
 
Table A2.3.  Pairwise comparisons between processes 1 and 3 in different laboratories. 

Process 1 
Lab 1 Lab 2 Lab3  

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 
Batch 1    P0L0 P0L0 P0L0 Lab1 
Batch 2    P0L0 P0L0 P0L0 

Lab 2 Batch 3 P0L0 P0L0 P0L0   P0L0 
Batch 4 P0L0 P0L0 P0L0 P0L0 P0L0  
Batch 5 P0L0 P0L0 P0L0 P0L0 P0L0  

Process 3 

Lab 3 
Batch 6 P0L0 P0L0 P0L0 P0L0 P0L0  

 
Table A2.4 summarizes the numbers of members in the various sub-populations for the 
process-laboratory comparisons.   
 
Table A2.4 

 P0 P0 Total 
L0 162 297 459 
L0 297 675 972 

Total 459 972 1431 
 
Thus, for example, the probability of drawing at random a pair of samples representing 
the same process carried out at the same laboratory from this set is 162/1431 or 11%. 
 
For each process, we can summarize the various comparisons among batches as in Table 
A2.5.  The structure of this matrix is the same as that of A2.1.   The diagonal cells, 
represent comparisons between samples drawn from the same batch.  Each diagonal cell 
contains 3 pairwise comparisons among the 3 replicate samples drawn from that batch.  
Thus, the set {B0L0} (≡ {B0P0L0}) contains 3 x 6 x 3 = 54 pairs.  Similarly, the blue 
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shaded cells represent comparisons among samples from different batches made by the 
same process at the same lab {B0P0L0}.  By analogy with table A2.1 there are 108 pairs 
in this set.  Finally the yellow shaded cells in Table A2.5 represent a total of 297 pairwise 
comparisons between samples drawn from different batches made by the same process at 
different laboratories {L0P0B0}.   
 
Table A2.5.  Pairwise comparisons between samples drawn from batches made by the 
same process. 

  Lab 1 Lab 2 Lab 3 

  Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 
Batch 1 L0P0B0 L0P0B0 L0P0B0 L0P0B0 L0P0B0 L0P0B0 
Batch 2  L0P0B0 L0P0B0 L0P0B0 L0P0B0 L0P0B0 

Lab 1 

Batch 3   L0P0B0 L0P0B0 L0P0B0 L0P0B0 
Batch 4    L0P0B0 L0P0B0 L0P0B0 Lab 2 
Batch 5     L0P0B0 L0P0B0 

Lab 3 Batch 6      L0P0B0 
 
The numbers of members in each of the sets defined by Table A.2.5 is summarized in 
Table A.2.6.   
 
Table A2.6 

 P0B0 P0B0 Total 
L0 54 108 162 
L0 0 297 297 

Total 54 405 459 
 
Note that the following relationships hold: 
 

{L0B0} ≡ {B0P0L0}        (A2.1) 
 

{L0B0} ≡ {B0P0L0} ∪ {B0 P0L0}; {L0B0} = ∅    (A2.2) 
 

{L0B0} ≡ {B0P0L0} ∪ {B0 P0L0}      (A2.3) 
 
and  
 

{L0P0} ≡ {B0P0L0} ∪ {B0P0L0}      (A2.4) 
 

{L0P0} ≡ {B0P0L0} ∪ {B0 P0L0}; but {B0P0L0} = ∅    (A2.5) 
 

{L0P0} ≡ {B0P0L0} ∪ {B0P0 L0}; but {B0P0L0} = ∅    (A2.6) 
 

{L0P0} ≡ {B0P0 L0} ∪ {B0 P0 L0}; but {B0P0L0} = ∅.    (A2.7) 
 



April 21, 2006 
Page 41 of 41 

Therefore,  
 

{L0B0} ≡ {B0P0L0} ∪ {P0L0}       (A2.8) 
 

{L0B0} ≡ {P0L0} ∪ {P0L0} = {L0}.      (A2.9) 
 
 
Clearly, the probability of randomly drawing two samples from the same batch from the 
entire set of samples is 54/1431 or 3.8%.  The probability of drawing a pair of samples 
that were made in the same lab, but not in the same batch is given by (108 + 297)/1431 
and the probability of drawing a pair of samples that were grown in different laboratories 
is 972/1431.  When determining the marginal probabilities P(Δ ≤ Δb|B0L0) and P(Δ ≤ 
Δb|B0 L0) in order to generate ROC curves, it is important to remember that batches from 
different processes are included in the sample sets { B0L0} and {B0 L0}, as indicated in 
(A2.8) and (A2.9).   
 


